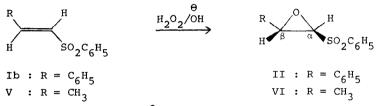

α, β-EPOXYSULFONES BY EPOXIDATION OF α, β-UNSATURATED SULFONES

B. Zwanenburg and J. ter Wiel Department of Organic Chemistry, The University, Bloemsingel 10, Groningen, The Netherlands

(Received in UK 19 January 1970; accepted for publication 29 January 1970)


We wish to report the synthesis of α,β -epoxysulfones by alkaline epoxidation of α,β -unsaturated sulfones. Treatment of <u>cis</u>-phenyl- β -styryl sulfone (Ia) with hydrogen peroxide under basic conditions produces the <u>trans</u>-epoxysulfone (II) in 85% yield. Similarly, alkaline epoxidation of <u>cis</u>- β -styryl p-tolyl sulfone (III) afforded <u>trans</u>-epoxysulfone IV (94%).

Compound IV, m.p. $155-158^{\circ}$ dec., exhibits in the IR spectrum strong sulfone absorptions at 1310 and 1140 cm⁻¹, and epoxide bands at 1215, 905 and 825 cm^{-1} . The PMR spectrum (in CDCl₃) showed, in addition to the protons of the aromatic substituents, two doublets, one proton each, at δ 4.16 (H_a) and δ 4.53 ppm (H_b) with J_{ab} 1.5 cps. These data for IV accord fully with those reported recently by Vogt and Tavares¹, and also by Bohlmann and Haffer², who synthesized this epoxysulfone by a Darzens condensation of benzaldehyde and chloromethyl p-tolyl sulfone. The value of J_{ab} is indicative^{1,3} for the <u>trans</u> configuration of the epoxide.

The IR spectrum of II (m.p. $102-104^{\circ}$)⁴ was similar to that of IV, as was the PMR spectrum in which the protons H_{α} and H_{β} appeared as doublets at § 4.18 and § 4.55 ppm, respectively, with $J_{\alpha\beta}$ 1.5 cps. This value of $J_{\alpha\beta}$ points to a trans configuration for II. 935

Treatment of the geometrical isomer of Ia, e.g. trans-phenyl β -styryl sulfone (Ib), with alkaline hydrogen peroxide gave the trans epoxide II in 83% yield. Alkaline epoxidation of trans-phenyl 1-propenyl sulfone V with hydrogen peroxide produced the trans-epoxysulfone VI (m.p. 51.5-52.5°) in 67% yield⁴. The PMR spectrum (in CDCl₂) of VI shows H_a as a doublet at δ 3.91 (J_{a8} 1.5 cps), H_a as two superimposed quartets at 6 3.64 and 3.67 ($J_{\alpha\beta}$ 1.5; $J_{\beta-CH_{\alpha}}$ 5.2 cps) and the methyl protons as a doublet at & 1.41 ppm (J 5.2 cps). Hence, in the latter two cases the stereochemical configuration of the starting material is retained in the epoxide.

Bohlmann and Haffer² have recently reported that their attempts to prepare an epoxysulfone by the above method were unsuccessful.

From the results described above we may conclude that the alkaline epoxidation of α , β -unsaturated sulfones is a stereoselective process, i.e. irrespective of the configuration of the starting material a single stereoisomer of the product is obtained. Thus, the stereochemical course of this epoxidation resembles that of α , β -unsaturated ketones which is also stereoselective⁵.

The following procedure is representative: To a solution of 0.77 g (3 mmoles) of III in 10 ml of acetone 1.0 ml of 2.2 N aqueous sodium hydroxide was added, followed by 0.84 ml of 30% aqueous hydrogen peroxide over 10 min. at 40 to 45°. After the addition was completed, stirring was continued for 30 min. at **45-50°**. After cooling to room temperature the reaction mixture was poured into **100 ml of water.** Subsequent chilling to 0° and filtration, gave the epoxide IV, which was recrystallized from carbon tetrachloride/hexane (1:1); yield 0.77 g (94%), m.p. $155-158^{\circ}$ dec.

REFERENCES

1	I. P.	F.	Voqt	and	D.F.	Tavares,	Can.	J.	Chem.,	47,	2875	(1969)	•

- F. Bohlmann and G. Haffer, <u>Chem. Ber.</u>, <u>102</u>, <u>4017</u> (1969).
 G. G. Lyle and L. K. Keefer, <u>J. Org. Chem.</u>, <u>31</u>, 3921 (1966).
- 4. Correct combustion analyses were obtained for this new compound.
- 5. H. O. House, Modern Synthetic Reactions, W. A. Benjamin Inc. (1965), p. 117-118 and references cited therein.